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A. ML-Laplace approximation algorithm 

This section describes the Laplace approximation of the model log-likelihood and the 
algorithm to calculate the maximum likelihood (ML) estimators of the model parame-
ters and obtain the modal predictors of the random effects. The function glmmTMB of 
the R statistical package glmmTMB implements this algorithm. Note that the proposed 
methodology is based on an area-level zero-infated Poisson (aZIP13) mixed model (see 
Section 3). It is therefore a mixture model with Bernoulli (BE) and Poisson (PO) dis-
tributions. Although for a mixture-type model it seems more natural to use the EM 
algorithm, it is not recommended in our research. This is because the EM algorithm 
does not provide modal predictions of the random effects. Hence, it is a drawback when 
calculating the IN predictor, as it would have to be obtained using the EBP or ESP pre-
dictors of the random effects. In such a case, the IN predictor would no longer have the 
computational advantages observed in the simulation experiments of Appendix B. 

For the sake of completeness, let us start with the Laplace approximation of a multi-
ple integral of a general function exp(h(x)), where h : Rm 7→ R is a twice continuously 
differentiable function with a global maximum at the column vector x0. That is, let us 

dh d2h 
assume that ḣ(x0) = = 0 and h ¨ (x0) = is negative defnite.

dx dx2 
x=x0 x=x0 

A Taylor series expansion of h(x) around x0 yields to 

1 � � 
h(x) = h(x0)+ ḣT (x0)(x − x0)+ (x − x0)

T h ¨ (x0)(x − x0)+ o ∥x − x0∥2 
2 

1 
(x − x0)

T ¨ ≈ h(x0)+ h(x0)(x − x0).2 

It holds that the multivariate Laplace approximation of the integral of exp(h(x)) is Z Z n o1 � �h(x0)eh(x) dx ≈ e exp − (x − x0)
T − h ¨ (x0) (x − x0) dx 

Rm Rm 2 
h(x0)= (2π)m/2 − h ¨ (x0) 

−1/2 e , 

where it is used that the integral of the multivariate normal p.d.f. f (x) is one. 
The likelihood of the aZIP13 mixed model is Z Z � 

P(y;θ) = P(y|u;θ) fu(u)du = exp h(u;y,θ) du, (A.1) 
RK(1+IJ) RK(1+IJ) 

where 

I J K K � I J �K(1 + IJ) 1 
1,k +
2

∑∑∑ ∑ ∑∑h(u;y,θ ) = logP(yi jk|ui jk;θ ) − log2π − u u2,i jk2 2i=1 j=1 k=1 k=1 i=1 j=1 

and ui jk = (u1,k,u2,i jk)
T . To apply the Laplace approximation to the integral in (A.1), 

we have to maximize h(u;y,θ ) in u, given y and θ . For simplicity, we write h(u). We 

2 
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can carry out the maximization by applying a R function of optimization. Alternatively, 
we can implement a Newton-Raphson algorithm after calculating the frst and second 
partial derivatives of h with respect to u1,k and u2,i jk, i ∈ I, j ∈ J, k ∈ K, given y and 
θ . Let ḣ and h ¨ denote the K(1 + IJ) × 1 vector and the K(1 + IJ) × K(1 + IJ) matrix 
of frst and second order partial derivatives of h(u) with respect to u, respectively. The 
Newton-Raphson updating equation is 

(i+1) (i) − h ¨−1(u(i)) ̇  (i)).u = u h(u (A.2) 

Let us denote by u◦ the argument of maxima of the function h(u). It holds ḣ(u◦) = 0 and 
the matrix h ¨ (u◦) is negative defnite. 

The log-likelihood of the aZIP13 mixed model can be approximated by 

1
logP(y;θ ,) ≈ IJ log2π + h(u◦) − log |− h ¨ (u◦)| ≜ g(θ ;y,u◦).

2 

The following step is to maximize g(θ ;y,u◦) in θ ∈ Θ. For simplicity, we write g(θ ). 
Maximization can be done by applying a R function of optimization. Alternatively, 
we can implement a Newton-Raphson algorithm after calculating the frst and second 
partial derivatives of g with respect to the components of θ , given y and u◦ . Let be 
M = dim(Θ) = q1 + q2 + 2. Let ġ and g̈ denote the M × 1 vector and the M × M matrix 
of frst and second order partial derivatives of g(θ), respectively. The Newton-Raphson 
updating equation is 

θ
(i+1) = θ (i) − ¨−1(θ (i)) ġ(θ (i)).g (A.3) 

All things considered, the fnal ML-Laplace approximation algorithm combines the 
two described Newton-Raphson algorithms and can be summarized by the following 
steps: 

1. Set the initial values i = 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, θ (0), θ (−1) = θ (0) + 11, 
u(0) = 00, u(−1) = 11, where 0 and 1 are column vectors of zeros and ones, respec-
tively. 

2. Until ∥θ (i) − θ (i−1)∥2 < ε1, ∥u(i) − u(i−1)∥2 < ε2, do 

(a) Apply algorithm A.2 with seeds u(i), convergence tolerance ε3 and θ = θ (i) 

fxed. Output: u(i+1). 

u(i+1)(b) Apply algorithm A.3 with seeds θ (i), convergence tolerance ε4 and u = 
fxed. Output: θ (i+1). 

(c) i ← i + 1. 

3. Output: θ̂ = θ (i) and û = u(i). 

The ML-Laplace approximation algorithm is applied to maximize the model log-like-
lihood (3.2) in the model parameters and in the random effects. In the output, the al-
gorithm approximates the model log-likelihood (which is an integral), calculates the 
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maximum likelihood estimators of the model parameters and gives predictors of the ran-
dom effects (mode or modal predictors). The model log-likelihood contains integrals of 
dimension 1+ IJ. 

The ML-Laplace approximation algorithm contains two sub-algorithms (algorithms 
A.2 and A.3). The frst one approximate multiple integrals by applying the Newton-
Raphson algorithm (algorithm NR) and by making a maximization on the random ef-
fects. The second one performs the algorithm NR to maximize the approximated log-
likelihood h(u;y,θ ), given after (A.1), in the model parameters. Algorithm NR search 
local maxima. However, because of the quadratic form of function h(u;y,θ ), algorithm 
NR will stop in the neighbourhood of the global maximum. Unfortunately, the sec-
ond subalgorithm, maximizing g(θ ;y,u◦) in θ ∈ Θ, may converge to a local maximum 
instead of the global maximum. This is why we advice to run the ML-Laplace approxi-
mation algorithm starting from appropriate starting values. Our recommendation is to ft 
a logit mixed model to the zero non-zero data and a Poisson mixed model to the count 
data, and use the obtained estimates of model parameters as algorithm seeds. 

Through the convergence of the ML-Laplace approximation algorithm, besides the 
ML estimators of the model parameters, it provides modal predictors, û, of the random 
effects and the maximized marginal log-likelihood. Since the ML estimators are consis-
tent and asymptotically normal when I, J and K tend to infnity (see e.g. Section 3.7.2 
in Jiang (2007)), the algorithm can also be used to approximate the asymptotic covari-
ance matrix (inverse of the Fisher information matrix) which allows the calculation of 
Wald statistics to test hypotheses about the model parameters. In practice, we use the 
sign-shifted Hessian matrix (second derivatives of the log-likelihood function) as an ap-
proximation of the Fisher information matrix. That is, the asymptotic variance matrix of 
θ̂ , Q(θ), can be approximated as Q(θ ) ≈−g̈−1(θ̂ ). Further, the asymptotic distribution 
of θ̂ is NM(θ ,Q(θ )). Therefore, an asymptotic CI at the level 1 − α for a component θℓ 

of θ is 
θ̂ℓ ± z1−α/2 q 1/2 

, ℓ = 1, . . . ,M,ℓℓ 

where θ̂ = θ κ , Q(θ κ ) = (qab)a,b=1,...,M, κ is the last iteration of the ML-Laplace algo-
rithm and zα is the α-quantile of the N(0,1) distribution. For a regression parameter βaℓ, 
a = 1,2, ℓ = 1, . . . ,qa, we can give asymptotic p-values to test signifcance. For example, 
if β̂1ℓ = β0, the p-value to test H0 : β1ℓ = 0 vs H1 : β1ℓ ≠ 0 is 

√ 
p-value = 2PH0 (β̂1ℓ > |β0|) = 2P(N(0,1) > |β0|/ qℓℓ ), ℓ = 1, . . . ,q1. 

To test H0 : β2ℓ = 0 vs H1 : β2ℓ ≠ 0, we use qq1+ℓq1+ℓ instead of qℓℓ. 

B. Simulations under the SHBS2016 scenario 

Based on the case study, i.e. the SHBS2016 data, two simulation experiments have 
been performed. It should be recalled that domains have been determined according 
to the I = 52 Spanish provinces, J = 2 sexes and K = 4 age groups. Therefore, there 
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are D = IJK = 416 domains defned by the crosses of provinces, sex and age groups. 
According to Option 1, the dependent variable yi jk is the direct estimator of the total 
count of single-person households in province i, with main breadwinner of sex j and age 
group k. Moreover, we have assumed that yi jk follows the aZIP13 mixed model selected 
in the statistical analysis of Section 6. Let u1k, u2,i jk, i ∈ I, j ∈ J, k ∈ K, be i.i.d. N(0,1) 
random effects. As q1 = 1, the BE submodel contains one auxiliary variable: x1,1 = 
intercept, with regression parameter β11 = −2.696. The standard deviation parameter is 
φ1 = 0.398. Further, the probability parameters of the BE submodel are 

pi jk ≡ pk = exp{β11 + φ1u1,k} 1 + exp{β11 + φ1u1,k} 
�−1 

, i ∈ I, j ∈ J, k ∈ K. 

The PO submodel contains q2 = 4 auxiliary variables: x2,1 = intercept, x2,2 = edu3, 
x2,3 = civ2 and x2,4 = civ3, with regression parameters β21 = −1.857, β22 = 2.138, β23 = 
−0.649 and β24 = 3.881. As discussed in Section 6, the remaining variables presented 
in Section 2 are not incorporated into the model because they are not signifcant at 5%. 
The standard deviation parameter is φ2 = 0.5171. The intensity parameters of the PO 
submodel are � �4 

λi jk = exp ∑ 
1ℓ= 

x2,i jkℓβ2ℓ + φ2u2,i jk , i ∈ I, j ∈ J, k ∈ K. 

The domain target random quantities are µyi jk = mi jk(1 − pk)λi jk, i ∈ I, j ∈ J, k ∈ K, 
where mi jk is the size parameter Ni jk of the subpopulation Ui jk. Direct estimates of pop-
ulation sizes and area-level auxiliary variables are obtained from the four 2016SLFS. 
Given their precision, they are considered to be true population values, rather than es-
timates. Setting the random effects u1,k to their theoretical expected value zero, we� �−1compute the basic zero-infated probability p0 = p0(β11) = exp{β11} 1+ exp{β11} , 
which takes the value p0(−2.696) = 0.063. 

B.1. Simulation 1 

Simulation 1 aims to assess the ftting algorithm, investigate the performance of the 
predictors of µyi jk and show how the proposed methodology behaves in simulations 
compared to other models, in order to identify its advantages. Apart from the predic-
tors derived from the AZIP13 mixed model, i.e., from the SP, ESP and IN, the plug-in 
predictor with fxed zero-infated probability (IN1)1 and the one based on the incorrect 
non-infated PO mixed model (IN0)2 are considered. See Boubeta et al. (2016) for fur-
ther information about the IN0 predictor. 

As far as the other models is concerned, a description of how the framework for 
comparisons has been set up is given below. Accordingly, and relying on the classical 
literature of area-level models, the empirical best linear unbiased predictor (EBLUP) of 

1The parameters of the IN1 predictor are β11,β21,β22, β23,β24,φ2. 
2The parameters of the IN0 predictor are β21,β22,β23, β24,φ2. 



the total of single-person households based on the basic Fay-Herriot (FH) model is in-
cluded (see Fay, Herriot (1979) for further details). In addition, a zero-infated negative 
binomial (NB) mixed model (aZINB13) is also ftted to identify the advantages of the 
proposed procedure for excess zeros. So, instead of the PO distribution, the count is 
modelled with a NB distribution. As in Section 3, the random intercept of the BE sub-
model depends on the age group and that of the NB submodel depends on the domain. 
The IN predictor is derived. For both models, the same set of auxiliary variables as used 
in the above-mentioned PO models is considered. 

Simulation 1 has the following steps: 

1. Repeat R = 103 times (r = 1, . . . ,R): 

(r) (r)1.1. Generate u1,k, u2,i jk i.i.d. N(0,1), i ∈ I, j ∈ J, k ∈ K. 

1.2. For i ∈ I, j ∈ J, k ∈ K, calculate � �−1(r) (r) (r)p = exp{β11 + φ1u1,k} 1 + exp{β11 + φ1u1,k} ,k � �4 � � 
λ (r) i jk = exp ∑ 

1ℓ= 

(r) (r) (r) 
λ (r)x2,i jkℓβ2ℓ + φ2u2,i jk , µyi jk = mi jk 1− pk i jk . 

� � � � 
(r) (r) (r) (r) (r)1.3. Generate z p̂ , y = 0 if z = 1 and y mi jkλ (r) ifi jk ∼ BE k i jk i jk i jk ∼ PO i jk 

z(r) = 0, i ∈ I, j ∈ J, k ∈ K.i jk 

1.4 For i ∈ I, j ∈ J, k ∈ K, calculate τ̂(r) ∈ {β̂ (r) 
β̂
(r) 

β̂
(r) 

β̂
(r) 

β̂
(r) 

φ̂
(r) 
, φ̂

(r)}11 , 21 , 22 , 23 , 24 , 1 2 
(r) sp(r) esp(r) in(r) in1(r) in0(r) FH(r)and µ̂yi jk ∈ {µ̂yi jk , µ̂yi jk , µ̂yi jk , µ̂yi jk , µ̂yi jk , µ̂yi jk }. 

2. For each estimator τ and predictor µ̂yi jk, i ∈ I, j ∈ J, k ∈ K, calculate 

R R1 
� 

1 
�1/2 

BIAS(τ̂) = (τ̂(r) − τ), RMSE(τ̂) = (τ̂(r) − τ)2
∑ ∑ ,

R Rr=1 r=1 � �1/2R R11 (r) (r) 
yi jk − µyi jk), 

(r) (r) 
yi jk − µyi jk)

2
∑ ∑(µ̂ (µ̂BIASi jk = RMSEi jk = ,

R Rr=1 r=1 

I J K I J K1 
IJK 

1
∑∑∑ 

i=1 j=1 k=1 
|BIASi jk|, RMSE = ∑∑∑ABIAS = RMSEi jk.IJK i=1 j=1 k=1 

3. Calculate the corresponding relative performance measures in %. That is, calcu-
late the relative bias (RBIASi jk), the relative root-MSE (RRMSEi jk), the average 
absolute relative bias (ARBIAS) and the average relative root-MSE (RRMSE): 

BIAS(τ̂) RMSE(τ̂)
RBIAS(τ̂) = 100 , RRMSE(τ̂) = 100 ,

|τ| |τ| 



RBIASi jk RMSEi jk 1 (r)
∑RBIASi jk = 100 RRMSEi jk = 100 µyi jk µ=, , yi jk,R|µyi jk| |µyi jk| r=1 

I J K I J K 

∑ARBIAS = 
1 

IJK 
1

∑∑∑ 
i=1 j=1 k=1 

|RBIASi jk|, RRMSE = ∑ 
j 1= 

∑ 
i 1= 

RRMSEi jk.IJK k=1 

We frst run Simulation 1 by assuming the same model parameters as in the application 
to real data. To investigate the effect of the basic zero-infated probability on the per-
formance measures, we also consider the cases p0(−1.386) = 0.200 and p0(0) = 0.500. 
For the SHB2016 scenario, with p0 = 0.063, Table B.1 presents the results of Simula-
tion 1 for the model parameters. For both BE and PO submodels, the relative biases are 
small but the RRMSEs are not, implying that the variance is the main component of the 
MSE. This may be due to the ratio between the number of domains and the number of 
estimated model parameters, D/M = 416/7 ≈ 60, which is not large enough to activate 
the asymptotic properties of the ML estimators. However, it is notable that the RRM-
SEs of β11 and φ2 are particularly good. Appendix C provides additional tables for the 
corresponding simulation results under scenarios with basic zero-infated probabilities 
p0 = 0.2 and p0 = 0.5, allowing us to analyse what happens as p0 increases. 

Table B.1. Relative performance measures (in %) of the model parameter estimators with p0 = 
0.063. Simulation scenario based on SHBS2016. 

BE submodel 
β11 φ1 β21 

PO submodel 
β22 β23 β24 φ2 

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517 
RBIAS -0.183 -42.196 0.881 -2.303 -1.289 -0.486 -0.510 
RRMSE 11.329 78.693 190.866 121.998 326.656 96.880 3.708 

Table B.2 provides the relative performance measures of Simulation 1 for the predic-
tors SP, ESP, IN (of the aZIP13 and aZINB13 mixed models), IN1, IN0 and FH. To better 
understand the necessity of running this experiment and interpret its results, we empha-
size that the predictors SP and ESP are not calculated, but rather are approximated, since 
the integrals that appear in their formulas cannot be calculated analytically. The approx-
imations are obtained by the antithetical Monte Carlo (MC) method, with S = 2000, as 
it is described in Section 4. Since we approximate integrals in R2, the approximations 
are not precise enough to acquire the theorical properties. Increasing S even more in a 
simulation experiment with R = 1000 iterations entails unaffordable computation times 
in Simulation 1 and even more so in Simulation 2. Therefore, the results are subject to 
the approximation method and the number of iterations. 



Table B.2. Relative performance measures (in %) for the predictors with S = 2000. Two model-
based alternatives are included. Simulation scenario based on SHBS2016. 

p0 Measure SP ESP 
aZIP13 

IN IN1 IN0 
FH 

EBLUP 
aZINB13 

IN 
0.063 ARBIAS 0.358 0.361 0.790 9.179 3.068 0.780 3.968 

RRMSE 14.429 14.476 14.662 60.759 60.789 30.380 28.143 
0.200 ARBIAS 0.727 0.739 2.444 9.286 13.460 1.405 4.492 

RRMSE 26.270 26.155 25.894 60.714 63.759 57.578 34.117 
0.500 ARBIAS 2.965 2.130 5.955 10.716 77.754 2.925 5.566 

RRMSE 43.697 43.075 40.926 62.293 104.149 111.921 44.572 

The discussion of Table B.2 starts with the analysis of the predictors proposed for the 
aZIP13 mixed model. Under all scenarios, the SP has the lowest bias, increasing slightly 
in its theoretical versions. When substituting true model parameters by ML estimates, 
the performance of the ESP is almost as good as that of the SP. In fact, changes are 
minimal. In nominal terms, the variance has a notable contribution to the RMSE for 
all predictors. Since the ESP and the IN predictor have similar RRMSEs, it has been 
decided to use the latter in Simulation 2 and in the case study, as its computational cost 
is lower. As expected, the predictors IN1 and IN0 are biased and have higher RRMSE 
than the IN predictor. They are based on wrong assumptions. 

Under the scenarios with basic zero-infated probabilities p0 = 0.2 and p0 = 0.5, the 
predictors IN1 and IN0 perform poorly, with relative biases equal to 9.286 and 13.460 
(p = 0.2). By increasing p0 from 0.2 to 0.5, the RRMSE of the IN1 predictor stabilizes 
and, even though the IN predictor is better, it indicates that age-group randomness is less 
relevant for such high zero-infated probabilities. In the latter case, the IN0 predictor 
performs extremely poorly. To sum up, we conclude that the IN predictor obtained from 
the aZIP13 mixed model performs much better than the predictor based on the model 
with constant zero infation structure. The same applies to the IN0 predictor. Therefore, 
we do not recommend to use predictors IN0 and IN1 if there is an excess of zeros. 

What happens with other solutions based on a model-based approach is discussed 
below. As for the EBLUP-FH, its bias is small for all values of p0, with results close 
to the SP and the ESP. However, this is not a zero-infated model, which has a negative 
impact on the error through a signifcant increase in the variance as p0 increases. In 
fact, its RRMSE is even worse than that of IN0 predictor when p0 = 0.5. It has been 
shown that the response variable has excess zeros and the FH model does not provide a 
solution to this problem. Regarding the IN predictor of the aZINB13 mixed model, their 
bias is greater than that of the IN predictor of the aZIP13 mixed model. However, this is 
compensated to some extent by a lower variance, achieving similar but worse results. 

Although both bias and error increase with increasing number of zeros, the proposed 
ZIP-based estimators perform much better than the traditional FH EBLUP. In fact, ZIP 
models alleviate this situation and adequately model the excess of zeros. Actually, our 
contribution has proven to be superior to the FH model and the aZINB13 mixed model. 
As an overall conclusion, the main advantages of the aZIP13 mixed model over existing 
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models, and in particular of the IN predictor, are computational performance and reduc-
tion in bias and RRMSE. This is why in Section 6 we have focused on analysing the 
concision between the design-based approach and the model-based approach to SAE. 

B.2. Simulation 2 

Simulation 2 studies the behaviour of the parametric bootstrap estimator of the MSE of 
a predictor µ̂yi jk of µyi jk. More concretely, we investigate the behaviour of mse ∗(µ̂yi jk), 
which is compared with the empirical MSE of µ̂yi jk, obtained from Simulation 1. For 

µ inillustrative purposes and speed of computation, we select µ̂yi jk = ˆyi jk. The aim is to 
give some advice on which B value to choose. The outline is as follows. 

1. Take MSEi jk = RMSE2 
i jk, i ∈ I, j ∈ J, k ∈ K, from Simulation 1. 

2. Repeat R = 500 times (r = 1, . . . ,R): 

(r)2.1. As in Simulation 1, generate a sample (yi jk,x1,i jk,x2,i jk), i ∈ I, j ∈ J, k ∈ K. 

β̂
(r) 

β̂
(r) 

β̂
(r) 

β̂
(r) 

φ̂
(r) 

φ̂
(r)2.2. Calculate β̂ (r) , .11 , 21 , 22 , 23 , 24 , 1 2 

2.3. Repeat B times (b = 1, . . . ,B): 
∗(rb) ∗(rb)2.3.1. Generate u , u2,i jk i.i.d. N(0,1), i ∈ I, j ∈ J, k ∈ K.1,k 

2.3.2. For i ∈ I, j ∈ J, k ∈ K, calculate � �−1∗(rb) ∗(rb) ∗(rb)p = exp{β̂11 + φ̂1u } 1 + exp{β̂11 + φ̂1u } ,k 1,k 1,k � �4 � � 
λ ∗(rb) 

i jk = exp ∑ x2,i jkℓ 
∗(rb) ∗(rb) ∗(rb) 

λ ∗(rb)
β̂2ℓ + φ̂2u2,i jk , µyi jk = mi jk 1− pk i jk . 

ℓ=1 � � 
∗(rb) ∗(rb) ∗(rb) ∗(rb) ∗(rb)2.3.3 Generate z ∼ BE p̂ , y = 0 if z = 1 and y ∼ POi jk k i jk i jk i jk� � 

∗(rb)mi jkλ ∗(rb) if z = 0, i ∈ I, j ∈ J, k ∈ K.i jk i jk 

∗(rb)2.3.4. Calculate the predictor µ̂ , i ∈ I, j ∈ J, k ∈ K.yi jk 

2.4 For i ∈ I, j ∈ J, k ∈ K, calculate 

B � �21 ∗(rb) ∗(rb)∗(r)
∑ µ̂ − µmse = .i jk yi jk yi jkB b=1 

3. For i ∈ I, j ∈ J, k ∈ K, calculate 

1 R � � � 
1 R � �2 

�1/2 
∗(r) (∗r)

∑ ∑Bi jk − MSEi jk , REi jk − MSEi jkmse mse= = ,i jk i jkR Rr=1 r=1 

I J K I J K11
AB = 

IJK ∑∑∑ 
i=1 j=1 k=1 

|Bi jk|, RE = 
IJK ∑∑∑ REi jk. 

i=1 j=1 k=1 
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4. Calculate the corresponding relative performance measures in %. That is, cal-
culate the relative bias (RB), the relative root-MSE (RRE), the average absolute 
relative bias (AARB) and the average relative root-MSE (ARRE): 

Bi jk REi jk RBi jk = 100 , RREi jk = 100 ,
MSEi jk MSEi jk 

I J K I K 

∑ 
J 

∑
1 1

∑∑∑ ∑ 
i 1= 

ARB = |RBi jk|, RRE = RREi jk.IJK IJK i=1 j=1 k=1 j=1 k=1 

The non-relative average measures are not very interpretable because they are con-
ditioned to the large values of the target variable. So, the latter suggests focusing our 
study on the relative ones. For this reason, Figure B.1 prints fve boxplots of RBi jk and 
RREi jk, i ∈ I, j ∈ J, k ∈ K, for B = 100,200,400,500,600. 
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Figure B.1. Boxplots of RBi jk’s (left) and RREi jk’s (right), for B = 100,200,400,500,600. 

Table B.3. Average relative performance measures for B = 100, 200,400,500,600. 

B 100 200 400 500 600 
ARB 10.244 10.566 10.657 10.723 10.594 
RRE 134.643 99.255 73.821 68.054 60.089 

As can be observed in Figure B.1 (left), the relative biases do not decrease as the 
size of B increases, showing an origin-centric behaviour. There are few atypical values 
that correspond to the most confictive domains, i.e., those with smaller sample sizes 
or with zero observed single-person households in SHBS2016. This severely distorts 
the symmetry of the ordinate axis. On the other hand, Figure B.1 (right) shows that the 
relative root-MSEs decrease as B increases. Table B.3 confrms this behaviour, with an 
ARB stabilized around 10 and a RRE decreasing as B increases, but suggesting some 
stabilization around B = 600 iterations. It is concluded that the results for the MSE 
estimator of the IN predictor are reasonable in most domains. However, the low sample 



size of some of them and the non-observation of single-person households increases its 
bias and, therefore, the error of the parametric bootstrap estimator of the MSE. 

C. Additional simulation results 

This section provides additional results of Simulation 1 for zero-infated probabilities 
p0 = 0.2 and p0 = 0.5. Tables C.1 and C.2 presents the relative performance measures 
of the ML model parameter estimators. It can be noticed that the estimators of the BE 
submodel parameters, β11 and φ1, have slightly lower values of RBIAS and RRMSE than 
the corresponding ones under the SHBS2016 scenario, with p0 = 0.063. This suggests 
that the estimators of the BE submodel perform slightly better if the basic zero-infated 
probability increases. However, the changes are minor. For the remaining coeffcientes, 
there are no remarkable differences. It can be argued that the performance of the ft-
ting algorithm is not expected to worsen if the basic zero-infated probability increases 
drastically (from 0.063 to 0.2 or even to 0.5). 

Table C.1. Relative performance measures of model parameter estimators with p = 0.2. Simu-
lation scenario based on SHBS2016. 

BE submodel 
β11 φ1 β21 

PO submodel 
β22 β23 β24 φ2 

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517 
RBIAS 0.791 -34.480 1.325 -3.198 -2.113 -0.801 -0.659 
RRMSE 16.398 60.556 190.449 122.655 345.917 96.770 4.007 

Table C.2. Relative performance measures of model parameter estimators with p = 0.5. Simu-
lation scenario based on SHBS2016. 

BE submodel 
β11 φ1 β21 

PO submodel 
β22 β23 β24 φ2 

Estimate 
RBIAS 
RRMSE 

-2.696 0.398 
NaN -29.43 
NaN 55.028 

-1.857 
1.576 

191.085 

2.138 -0.649 3.881 
-3.116 -3.407 -0.731 3 

123.530 315.871 96.855 

0.517 
-1.110 
4.994 

D. RRMSE maps for the IN predictor of the proportion of single-
person households by domains 

This section maps the RRMSE of the IN predictor of the proportion of single-person 
households by domains, estimated by parametric bootstrap with B = 1000 resamples. 
For futher details, see Section 5. Recall that domains are defned as crosses between 
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provinces, sex and age groups. The maps on which RRMSE estimates are reported are 
included in Section 6.3 for the SHBS2016 data. 

Figures D.1-D.4 show the results for men (left) and women (right), by age group of 
the main breadwinner, from top to bottom. To sum up, it can be seen that the error varies 
with province, sex and age group. In fact, as a relative measure, it tends to be higher in 
those domains where the IN proportions are lower. Overall, it follows that the accuracy 
of our results is statistically reasonable, with RRMSEs below 30% in most domains, 
exceeding it only in those where predicted proportions are tiny. 

RRMSE Young men: Age group 1 under 10%
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RRMSE Young women: Age group 1 under 10%
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20 - 30 %
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Figure D.1. RRMSE of the IN predictor of the proportion of single-person households for young 
men (left) and women (right). Data from SHBS2016. 
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Figure D.2. RRMSE of the IN predictor of the proportion of single-person households for middle-
age men (left) and women (right). Data from SHBS2016. 
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RRMSE Adult men: Age group 3 under 10%
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RRMSE Adult women: Age group 3 under 10%
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Figure D.3. RRMSE of the IN predictor of the proportion of single-person households for adult 
men (left) and women (right). Data from SHBS2016. 
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Figure D.4. RRMSE of the IN predictor of the proportion of single-person households for elderly 
men (left) and women (right). Data from SHBS2016. 
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