Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000 000 000 000 00	

Multivariate approach to small area estimation: towards an area-level index of TIC

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study O	Empirical Analysis 0000 000 000 00	Discussion

Outline

- 1 Introduction
- 2 Data and two-level factor model The BLUP of f_d
- 3 Monte Carlo study
 - Comparison of sae of a common factor
- 4 Empirical Analysis
 - Survey TIC 2008
 - Synthetic variables of TIC
 - The naive approach: PCA
 - CFA: TIC 2008
 - CFA: TIC 2010

5 Discussion

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Introduction	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
			0000 000 000 000 00	

An index of TIC at small area ("comarca") level ?

- Statistical offices, worldwide, currently invest resources on surveys of ICT (from now on, "TIC")
- The aim is not to inspect TIC activity at the individual level, rather at the country and/or small area levels. It's also of interest comparison of areas on TIC intensity.
- Several questions of the TIC surveys are designed to capture the "level" of involvement in activity TIC, we say these questions share a general "common factor"
- We aim to assess variation of this "common factor" at area level
- Our work is "linking" multivariate (factor) analysis with small are estimation

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study O	Empirical Analysis 0000 000 000	Discussion

Hierarchical data, and model

Two-level data (case *i*, area *d*):

$$x_{id} (p \times 1); i = 1, \dots, n_d; d = 1, \dots, D$$

Factor model:

$$x_{id} = \mu + \Lambda f_{id} + \epsilon_{id} \tag{1}$$

 $f_{id}(p \times q)$ and $\epsilon_{id}(p \times 1)$ are (centered) vectors of common and unique factors, with respective variance matrices Φ and Ψ ; $\mu(p \times 1)$ is a mean vector: $\Lambda(p \times q)$ is the loading matrix. We assume

$$f_{id} = f_{id}^{(1)} + f_d^{(2)}; \quad \epsilon_{id} = \epsilon_{id}^{(1)} + \epsilon_d^{(2)}$$
 (2)

Here $f_{id}^{(1)}$ and $f_d^{(2)}$ and $\epsilon_{id}^{(1)}$ and $\epsilon_d^{(2)}$ are mutually independent (centered) random vectors with variance matrices Φ_w , Φ_b , Ψ_w and Ψ_b , respectively; the superscripts ⁽¹⁾ and ⁽²⁾ denoting variation at the first- (individual) and second- (area) levels, respectively.

Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000 000 000 00	

Combining (1) and (2),

$$x_{id} = \Lambda f_d^{(2)} + \Lambda f_{id}^{(1)} + \epsilon_{id};$$
(3)

and averaging to level two:

Factor Model (area level)

$$x_{.d} = \Lambda f_d + u_d, \tag{4}$$

A D > <
 A P >
 A

-

æ

$$u_{d} = \Lambda f_{.d}^{(1)} + \epsilon_{.d}^{(1)} + \epsilon_{d}^{(2)}$$
$$x_{.d} = \sum_{i} x_{id}/n_{d}; \quad f_{.d}^{(1)} = \sum_{i} f_{id}^{(1)}/n_{d}; \quad \epsilon_{.d}^{(1)} = \sum_{i} \epsilon_{id}^{(1)}/n_{d}$$

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study O	Empirical Analysis 0000 000 000 00	Discussion

It holds:

1	$\Phi_{\!f} = \Phi_b + \Phi_w$
2	$\operatorname{var}\left(f_{.d}^{(1)} \mid d\right) = \Phi_w/n_d$
3	$\operatorname{var}\left(u_{d}\mid d ight)=\Psi_{b}+n_{d}^{-1} imes\left(\Lambda\Phi_{w}\Lambda'+\Psi_{w} ight)$
4	$\operatorname{var}\left(u_{d}\right)=\Psi_{b}+E(n_{d}^{-1})\times\left(\Lambda\Phi_{w}\Lambda'+\Psi_{w}\right)$
5	$\operatorname{var}(x_{d}) = \Lambda \Phi_b \Lambda' + \operatorname{var}(u_d)$

イロト イロト イヨト イヨト

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model ●00	Monte Carlo study O	Empirical Analysis 0000 000 000 00	Discussion

BLUP of f_d ("small-area" estimation)

From formulae in Neudecker and Satorra (2003, p. 261), ¹ the BLUP of f_d in (4) can be written as

BLUP for f_d

$$\hat{f}_d = \Phi_b \Lambda' [\Lambda \Phi_b \Lambda' + \Psi_b + n_d^{-1} \times (\Lambda \Phi_w \Lambda' + \Psi_w)]^{-1} (x_{.g} - \mu) \quad (5)$$

The EBLUP replaces population parameters by estimates. There is a variety of estimates one can use. 2

¹Neudecker, H. and A. Satorra (2003), 'On best affine prediction", *Statistical Papers*, 44, 257-266

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model ○●○	Monte Carlo study O	Empirical Analysis 0000 000 000	Discussion
The DLUD of f			00	

BLUP f_d : "Classical" and multivariate sae

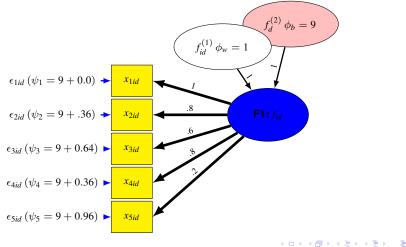
"classical:" If
$$p = q = 1$$
 then $x_{id} = f_{id}$, $\Lambda = 1$, $\epsilon_{id} = 0$,

$$\hat{f}_d = \frac{\Phi_b}{\Phi_b + n_d^{-1} \Phi_w} (x_{.d} - \overline{x_{.d}}),$$

a familial expression for the "classical" small area estimator (of a centered variable); \hat{f}_d "borrows strength" from neighboring areas only.

multivariate: If p > 1, \hat{f}_d is multivariate, it "borrows strength" not only from related areas, but also from several variables (specially from the variables more correlated with the target variable f_d)

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT


	Data and two-level factor model ○○●	Monte Carlo study O	Empirical Analysis 0000 000 000 00	Discussion
The BLUP of f_d				

- A small Monte Carlo study will be used to evaluate the proposed multivariate small area estimator.
- Two level data, and ML estimation of two-level confirmatory factor model, and ML estimation of a single (area level) confirmatory factor model.
- The approach can be solved using software for structural equation models (e.g., sem in R; EQS (Bentler, 2009); Mplus (Muthén and Muthén, 2010); LISREL (Joreskog and Sorbom, 2007); the new module sem of Stata, etc.).

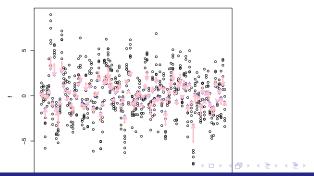
Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000	
		000	

Two level data generated by a one-factor model, with a two-level factor:

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model


Monte Carlo study

Empirical Analysis

Discussion

The two-level f_{id} (arrows from area parameter to direct estimator)

Data with a factor with two-level variation

multi-area data: area mean and direct estimator

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000	
		000	
		00	

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ < ≣ ▶

æ

Intraclass correlations of the variables X1 to X5

SUMMARY OF DA Number o	ATA of clusters			100
Average	cluster size	6.000		
Estimate	ed Intraclass	Correlations	for the	Y Variables
	:	Intraclass		
Variable	e Correla	ation		
X1	0.16	2		
X4	0.12	9		
X2	0.09	5		
х3	0.06	7		
X5	0.00	4		

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000 000 000 000 00	

e.g. sem estimation, with R

```
model
                       <- matrix(c(
                                                               'fl -> v1', NA, 1,
                                                                             'f1 -> v2', 'lamb2', NA,
                                                                                           'f1 -> v3', 'lamb3', NA,
                                                                                            'f1 -> v4', 'lamb4', NA,
                                                                                              'f1 -> v5', 'lamb5', NA,
                                                         'v1 <-> v1', 'theta1', NA,
                                                                        'v2 <-> v2', 'theta2', NA,
                                                                          'v3 <-> v3', 'theta3', NA,
                                                                          'v4 <-> v4', 'theta4', NA,
                                                                          'v5 <-> v5', 'theta5', NA,
                                                            'f1 <-> f1', 'phi', 10),
                                                             ncol=3, byrow=TRUE)
   Model Chisquare = 2.050578 Df = 5
   Parameter Estimates
                   Estimate Std Error z value Pr(>|z|)
lamb2 0.855709 0.18621 4.59546 4.3180e-06 v2 <--- f1
lamb3 0.569625 0.17795 3.20108 1.3691e-03 v3 <--- f1
lamb4 0.964611 0.20782 4.64160 3.4572e-06 v4 <--- f1
lamb5 -0.065828 0.13196 -0.49887 6.1787e-01 v5 <--- f1
thetal 1.675759 0.42439 3.94863 7.8601e-05 v1 <--> v1
theta2 2.091036 0.40413 5.17410 2.2901e-07 v2 <--> v2
theta3 2.873968 0.44726 6.42569 1.3127e-10 v3 <--> v3
theta4 2.379975 0.48109 4.94703 7.5354e-07 v4 <--> v4
theta5 2.365462 0.33671 7.02522 2.1374e-12 v5 <--> v5
phi 1.893884 0.56945
                                                                             3.32582 8.8160e-04 f1 <--> f1 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
```

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		•	0000	
			000	
Comparison of sae	of a common factor			

MSE of alternative estimators

Table: Monte Carlo estimates and standard errors of the MSE of alternative small area estimators (Monte Carlo based on 200 replications).

MSE	dirf [†]	dirX1	dirX5	dirfs	newMLf	newpopf
					165.58	127.06
$se(\widehat{MSE})$:	0.37	2.45	5.92	3.10	3.32	1.41

dirf: direct estimator with known true values of f

dirX1 and dirX5: direct estimates based on X1 and X5, respectively

dirfs: direct estimator based on the factor scores of ML analysis of individual data

newMLf: EBLUP of (5); Λ and Φ_b ML- between-area data, Φ_f ML-individual data (two ML CFA analyses involved)

newpopf: BLUP of (5); parameters at their true value

[†] non-feasible estimates are shown in blue

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study O	Empirical Analysis •••• ••• ••• •••	Discussion
Survey TIC 2008				

TIC 2008, Catalonia

Territorial Survey on Information and Communication Technologies of the Households (TIC) of 2008, conducted by the Statistics Institute of Catalonia, IDESCAT.

- Rotating panel, with five shifts of rotation and on an annual basis.
- Stratified two-stage sample.
 - The strata are 41 Catalan administrative divisions
 - The sample is uniformly distributed among them with 75 randomly selected first stage units (dwellings) in each administrative division.
 - Second-stage unit is person aged 16 or over (also randomly selected).

Sample size about 3000 individuals.

There are 56 survey questions, distributed among 12 blocks . We

first need to create a few synthetic variables that summarize the second

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
			000 000 000 000	
Survey TIC 2008				

First stage: Constructing synthetic variables

- The second and third blocks of survey's questions contain information on equipment and access to Internet in the household. We summarize part of this information in the new variable equip
 - 0 for households without a personal computer and without access to Internet
 - 1 for households with a computer but no access to Internet
 - 2 for households with a computer and slow access to Internet
 - 3 for households with a computer and broadband access to Internet
- The two blocks also contain information on the number of operating mobile phones in the household, variable mobilcom It ranges from 0 to 5 (5 meaning more than 4 operating phones)

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
		0000 000 000 000	

Survey TIC 2008

Constructing synthetic variables, e.g. frecInt

Variable frecInt ranges from 0 to 7. Again, the value is 0 if the household does not have access to Internet, and it is 7 if the respondent is connected to Internet over 20 hours a week.

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
			000 000 000 000 00	
Survey TIC 2008				

Synthetic Variables

Table: Variables In Factor Analysis

Variable	Description	Values
econ	Level of equipment in the household	0 to 3
mobile	Number of mobile phones in the household	0 to 5
sinceInt	Since when has access to Internet	0 to 4
knowPC	Number of tasks with a computer	0 to 9
knowInt	Number of tasks through Internet	0 to 9
frecPC	Intensity of use of personal computer	0 to 5
frecInt	Intensity of use of Internet	0 to 7
secbuy	Security perception: buying through Internet	0 to 3
secbank	Security perception: bank transactions through Internet	0 to 3
econ	Level of economic impact of ICT actions from home	0 to 4
social	Level of social impact of ICT actions from home	0 to 4
admin	Level of interaction with public administrations through Internet	0 to 6

イロト イ理ト イヨト イヨト

æ

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
	000		0000	
			000	
			00	
The naive approach	h: PCA			

Principal component analysis of the data aggregated by comarques gives the following results. Figure 3 shows that the solution is basically unidimensional. We will retain, however, the second component for the purpose of plotting comarcas and variables of TIC.



Figure: Scree plot for weighted data aggregated by commarcas

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model 000	Monte Carlo study O	Empirical Analysis	Discussion

The naive approach: PCA

Correlations of variables with principal components

	Comp.1	Comp.2
Equip	0.80	-0.32
Mobile	0.77	-0.37
Sincewhen	0.84	-0.28
knowPC	0.83	0.28
knowInt	0.94	-0.07
FrecPC	0.70	0.52
FrecInt	0.95	-0.07
Secbuy	0.65	0.48
Secbank	0.65	0.54
econ	0.78	-0.04
social	0.92	-0.15
admin	0.74	-0.25

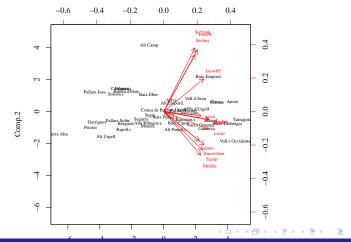
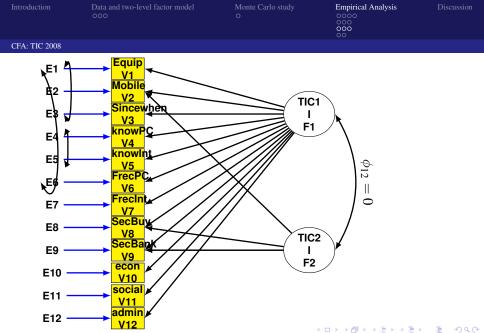

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Table: Correlations Variables vs PCs


Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model 000	Monte Carlo study O	Empirical Analysis	Discussion
The naive approach	h: DC A		00	

The biplot

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
			0000	
			000	
CE1			00	
CFA: TIC 2008				

CFA: 2008 data. Correlations of variables with F1 and F2.

	F1	F2
Equip	0.76	0.01
Mobile	0.72	-0.02
Sincewhen	0.80	0.12
knowPC	0.79	0.14
knowInt	0.98	-0.01
FrecPC	0.65	0.30
FrecInt	0.99	0.02
Secbuy	0.50	0.54
Secbank	0.52	0.86
econ	0.76	0.04
social	0.96	-0.01
admin	0.68	-0.00

• • • • • • • • • •

= 900

Table: Correlation of variables and factors

CHI-SQUARE = 55.607 BASED ON 48 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE

CHI-SQUARE STATISTIC IS 0.21010

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

troc		

Data and two-level factor model

Monte Carlo stud

Empirical Analysis

< 口 > < 同

Discussion

CFA: TIC 2008

Index Comarcal de TIC (F1). CFA: 2008 data

		Tarrag : 1.76	-		
	90%	VallOccid : 1.3	Anoia : 1.33	BaLlob : 1.39	Osona : 1.59
	T	valiOccid : 1.3	Alban . 1.55		Maresme : 1.16
	75%	Giron: 0.9	Garrotxe : 0.9	Garraf : 0.92 BaEmp : 0.79	VallAran : 0.89
		AlPen : 0.64	Barc : 0.65	Selva : 0.54	BaCam: 0.56
ЭĽ	_50%	PlaUrg : 0.4 Urgell : 0.22	PlaEstany : 0.4 VallOrient : 0.26	Bages : 0.29	AlEmp : 0.31 BaPen : 0.17
"त	Mea	n			
marc		ConcBarb : -0.2	Segri : -0.2	BaEbre : -0.12	
Index Comarcal TIC		Montsi : -0.48	Segarra : -0.45	AIRib : -0.44	Bergue : -0.37
Ē	25%				
	10%	Solson : -1.05	PallarsSob : -1.02 Noguera : -1.12	AlCam : -0.98 Ripoll : -1.1	AlUrg : -0.96 RibEbre : -1.07
	+10%	Priorat : -1.29		Garrig : -1.43	Cerda : -1.33
			PallarsJus : -1.56		
		TerraAlta : -2.18			

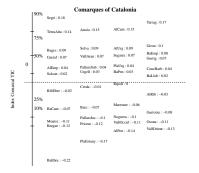
Comarques of Catalonia

Figure: Index Comarcal de TIC (F1). CFA: 2008 data

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

troc		

Data and two-level factor model


Monte Carlo study

Empirical Analysis

Discussion

CFA: TIC 2008

Index Comarcal de TIC (F1). CFA: 2008 data, using Mplus

Figure: Index Comarcal de TIC (F1). CFA: 2008 data

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study O	Empirical Analysis	Discussion
CFA: TIC 2010				
CFA: 2	010 data			

Table: Correlation of variables and factors

	F1	F2
Equip	0.73	-0.07
Mobile	0.26	-0.30
knowPC	0.94	0.00
knowInt	0.99	-0.02
FrecPC	0.96	-0.08
FrecInt	0.98	-0.05
Secbuy	0.54	0.84
Secbank	0.57	0.49
econ	0.90	-0.05
social	0.98	0.04
admin	0.77	0.22

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

CHI-SQUARE = 53.897, 40 DEGREES OF FREEDOM PROBABILITY VALUE 0.06998 Significant free error correlations: 6,2

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

	Data and two-level factor model	Monte Carlo study	Empirical Analysis	Discussion
	000		0000	
			00	
CEA. TIC 2010				

TIC-F1 in 2010

Comargues of Catalonia

Figure: Index Comarcal de TIC. F1, 2010. The mean is at 0.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study ○	Empirical Analysis 0000 000 000 00	Discussion

Conclusions

- TIC surveys permit summary measures of intensity of TIC in small areas
- A BLUP estimation of the area level parameter has been proposed based on classical factor score estimation of a confirmatory factor model
- The proposed BLUP contains as a particular case the classical sae for single variable analysis
- The MSE of theoretical and empirical versions of the proposed BLUP, as well as other naive predictors, for the area level factor have been compared in a Monte Carlo study
- The proposed EBLUP has been used to obtain index of level of TIC for the "comarcas" of Catalonia, for two repetitive surveys, years 2008 and 2011

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT

Data and two-level factor model	Monte Carlo study ○	Empirical Analysis 0000 000 000 00	Discussion

conclusions (cont.)

- In contrast to the naive exploratory PCA, our method allows comparing variation across years of area levels within the frame of the same model. Invariance of model is assessed using a classical chi-square goodness of fit test.
- We have disentangle a common ground between sae and structural equation model for two level data. This common ground is worth to be exploited (since user friendly software for SEM is widely developed, e.g. EQS, LISREL, Mplus, CALIS of SAS, Stata, ...)
- Our approach should be or relevance also to other areas of official statistics, where an area index needs to be extracted from survey data.

Albert Satorra and Eva Ventura, UPF Cristina Rovira, Maribel Garcia and Marc Pardal, IDESCAT